## ECOG Pharmacogenomics: Anti-Angiogenic Agents



Bryan P. Schneider, MD

George Sledge MD, Kathy Miller MD, David Flockhart MD, PhD, Todd Skaar PhD, Sunil Badve PhD.

COBRA, Indiana University

### Hallmarks of malignancy: a biomarker rich environment?



## Genetic variability impacts angiogenesis: brief summary

- Epidemiologic data:
  - Variable risk & prognosis in multiple conditions were angiogenesis is important: risk/prognosis in multiple malignancies, retinopathy, nephropathy, pre-eclampsia,



NOT Level 1 evidence
Body of data: strongly suggests variability is biologically important

Variability may associate with site of metastasis



#### Breast cancer angiogenesis as a model

- variability in complement factor in may affect treatment outcome in macular degeneration (?biomarker)
  - CC genotype had inferior outcome in visual acuity with intravitreal bevacizumab



### Excellent genetic variability in angiogenesis drug targets



### Bevacizumab in breast cancer-E2100: a model of therapeutic heterogeneity

#### Stratify:

- DFI ≤ 24 mos. vs. > 24 mos.
- < 3 vs. > 3 metastatic sites
- Adjuvant chemotherapy yes vs. no



#### Bevacizumab increased grade 3/4 toxicity

Serious but rare

| Serious, frequent, & unique |                                               |
|-----------------------------|-----------------------------------------------|
|                             | Likely related to duration of taxane exposure |

|   | Toxicity    |     | P ( | <b>%)</b> | P+B (%) | p-value           |
|---|-------------|-----|-----|-----------|---------|-------------------|
|   | Infeetion   |     | 2.9 |           | 9.3     | <0.001            |
| ( | Fatigue     |     | 4.9 |           | 9.1     | 0.04              |
|   | Neuropathy  |     | 17, | 7         | 23.5    | 0.05              |
|   | CNS ischem  | nia | 0   |           | 1.9     | 0.02              |
| ( | Headache    |     | 0   |           | 2.2     | 0.008             |
|   | Proteinuria |     | 0   |           | 3.5     | <u>&lt;0.00</u> 1 |
| < | Hypertensio | n   | 0   |           | 14.8%   | <0.001            |

Miller et al. **NEJM** 357:2666; 2007

## Bevacizumab significantly improved PFS



### Improvement in PFS/ORR did not translate into OS benefit





# Attempts to find surrogate markers for response to bevacizumab unsuccessful to date

- Tumor VEGF, Thrombospondin-2, k-ras, k-raf, p53 & MVD did <u>NOT</u> correlate with survival for patients with metastatic colon cancer treated with bevacizumab
- Baseline serum VCAM & urine VEGF did
   NOT correlate with outcome in E2100

Jubb et al., **JCO**, 24, 217-227; 2006 Ince et al., **J Natl Cancer Inst**, 97:981-9, 2005 Miller et al. **SABCS**, Abstract#3: 2005

## Germline genetic variation in tumor angiogenesis

- This an excellent place to study role of germline genetic variation!
  - Hallmark of malignancy
  - Other active drugs against angiogenesis
  - Balanced heterogeneity
    - Clear benefit vs. no benefit
    - Frequent, unique, non-overlapping toxicities
  - "Targeted therapy" without a population to target
  - Tumor angiogenesis is genetically diverse
    - Variation appears to been inherited (vs. mutations)

### E2100 Pharmacogenomics: a TBCI-catalyzed study

- Evaluate for correlation between VEGF/VEGFR-2 SNPs (from primary tumor) & efficacy
  - PFS (primary endpoint)
  - Overall Survival
  - OR
- Evaluate for correlation between VEGF/VEGFR-2 SNPs (from primary tumor) & toxicity
  - Clinically significant hypertension (Grade 3/4)
- Evaluate for association between SNPs & expression (IHC)
- Evaluate for association between expression (IHC) & outcomes

### Candidate SNPs meet fundamental requirements

#### Biologic rationale:

- Impact on breast ca risk/other
- Reasonable likelihood will alter gene function and/or production

#### Genes are clear drug targets:

- VEGF/VEGFR-2
- High frequency of rare allele:
  - VEGF SNPs: 15-49%
  - VEGFR-2 SNPs: 9-25%

#### **Candidate SNPs:**

#### **VEGF**

-2578 C/A, -1498 C/T, -1154 G/A, -634 G/C, & +936 C/T VEGFR-2

V297I, & Q472H

### E2100 Pharmacogenomics: a TBCI-catalyzed study

- Evaluate for correlation between VEGF/VEGFR-2 SNPs (from primary tumor) & efficacy
  - PFS
  - Over Why did we not use germline DNA?
  - OR
- Evaluate for correlation between VFGF/VFGFR-

Can we assume polymorphic sites evaluated are same in <u>tumor</u> and <u>host</u>?

- expression (IHC)
- Evaluate for association between expression (IHC) & outcomes

#### Genetic variability in tumor angiogenesis is identical to germline DNA



- •Genotype- (21 women with breast cancer)
  - -Primary breast tumor (n=17)
  - -LN+ (n=17) & LN- (n=19)
  - -VEGF 936 C/T
  - -eNOS Promoter (-786 T/C) & Exon 7 E298D
- •All polymorphisms (combined sites)
  - -high quality chromatographs in 145 of 159 (91%)
  - -100% concordance between samples that involved malignancy (primary or LN+) vs germline (95% CI, 0.88 to 1.00)

Table 3. Genotypic results of polymorphism of VEGF

| Case # | Primary tumor | Lymph node +            | Lymph node -            |
|--------|---------------|-------------------------|-------------------------|
| #1     | w/w           | w/w                     |                         |
| #2     |               | w/w                     | w/w                     |
| #3     | w/ var        | w/ var                  | w/ var                  |
| #4     | w/w           | $\mathbf{w}/\mathbf{w}$ | $\mathbf{w}/\mathbf{w}$ |
| #5     |               |                         | var / var               |
| #6     | w/w           |                         |                         |
| #7     |               |                         | w/w                     |
| #8     |               |                         | w/w                     |
| #9     | 0             | 0                       | w/ var                  |
| #10    | w/w           | w/w                     | w/w                     |
| #11    | w/ var        | w/ var                  | w/ var                  |
| #12    | w/ var        | w/ var                  | W/ var                  |
| #13    | w/w           | w/w                     | w/w                     |
| #14    | w/w           | w/w                     | w/w                     |
| #15    | w/w           | w/w                     | $\mathbf{w}/\mathbf{w}$ |
| #16    | w/w           | w/w                     | w/w                     |
| #17    | 0             | w/ var                  | w/ var                  |
| #18    | W/w           | $\mathbf{w}/\mathbf{w}$ | w/w                     |
| #19    | w/ var        | w/ var                  | w/ var                  |
| #20    | w/ var        | w/ var                  | w/ var                  |
| #21    | w/w           | w/w                     | W/w                     |

Genotypic results for the  $C^{936}T$  polymorphism of the VEGF gene for all 21 cases. Blank spaces indicate no sample submitted for that case number/site.

Schneider et al. Breast Cancer Research and Treatment. 96: 209; 2006

#### E2100 correlative study: **Methods**

- 673 eligible pts & 623 dz progression (11/07)
- DNA extracted from paraffin embedded tumor blocks (genotype-363; VEGF IHC-377; VEGFR2-341)
  - ~50% from experimental arm
- Genotyping of candidate SNPs (Real time-PCR)
  - VEGF: -2578 C/A, -1498 C/T, -1154 G/A, -634 G/C, 936C/T
  - **VEGFR-2**: V297I & Q472H
- IHC for VEGF & VEGFR-2 tumor expression

## VEGF -2578 AA & -1154 AA genotypes associated with improved OS in combination arm

| SNP       | Genotype comparison<br>(median OS in mo & freq) | HR   | CI                 | P-<br>value |
|-----------|-------------------------------------------------|------|--------------------|-------------|
| VEGF-2578 | CA (24.4; 42.6%) vs. AA (37.0; 20.8%)           | 1.78 | (98.3%=0.96, 3.32) | 0.026       |
|           | CC (22.2; 37.6%) vs. AA (37.0; 21%)             | 1.70 | (98.3%=0.91, 3.17) | 0.043       |
|           | CC (22.2; 37.6%) vs. CA (24.4; 42.6%)           | 0.99 | (98.3=0.62, 1.58)  | 0.95        |
|           | AA vs. CA+CC                                    | 0.58 | (95%-0.36, 0.93)   | 0.023       |
| VEGF-1154 | GG (22.3; 56.9%) vs. GA (29.8; 38.8%)           | 1.60 | (98.3%=0.98, 2.60) | 0.022       |
|           | GG (22.3; 56.95) vs. AA (46.5; 9.4%)            | 2.69 | (98.3%=1.10, 6.59) | 0.008       |
|           | GA (29.8; 38.8%) vs. AA (46.5: 9.4%)            | 1.68 | (98.3%=0.66, 4.30) | 0.19        |
|           | AA vs. GA vs. GG                                | 0.62 | (95%=0.46, 0.83)   | 0.001       |

# VEGF -2578 AA & -1154 AA genotypes in combination arm outperformed control



Median OS
Control arm=25.2 mo
Combination arm=26.7 mo
Combination arm AA=37.0 mo

### Median OS Control arm=25.2 mo Combination arm=26.7 mo Combination arm AA=46.5 mo

## Genetic variability of VEGF predicts clinically significant hypertension in E2100

| SNP       | % Grade 3/4 hypertension | p-value |
|-----------|--------------------------|---------|
|           | (#/%) by genotype        |         |
| VEGF-634  | CC=0% (n=27;15.3%) vs.   | 0.013   |
|           | GC=22% (n=82; 46.3%) vs. |         |
|           | GG=19% (n=68; 38.4%)     |         |
|           | CC vs. GC+GG             | 0.005   |
| VEGF-1498 | TT=8% (n=60; 33.9%) vs.  | 0.056   |
|           | CT=22% (n=82; 46.3%) vs. |         |
|           | CC=23% (n=35; 19.8%)     |         |
|           | TT vs. CC+CT             | 0.022   |

Schneider et al; SABCS, 2007

### The Promise of Pharmacogenetic Testing



VEGF -2578 CA, CC VEGF -1154 GA, GG VEGF -634 GC, GG VEGF -1498 CT, CC

VEGF -2578 AA VEGF -1154 AA VEGF -634 GC, GG VEGF -1498 CT, CC

VEGF -2578 AA VEGF -1154 AA VEGF -634 CC VEGF -1498 TT

Walgren et al. JCO 2005

VEGF -2578 CA, CC VEGF -1154 GA, GG VEGF -634 CC VEGF -1498TT

### VEGF genotypes may be associated with tumor expression

- VEGF genotype trended toward a correlation with VEGF expression
  - Prior preclinical data suggest VEGF
     -2578A & -1154A alleles have lower expression
  - VEGF-2578 AA genotype had lower VEGF expression (p=0.12) vs. alternate genotypes
  - VEGF-1154 AA genotype had lower VEGF expression (p=0.08) vs. alternate genotypes
  - Does this provide some sort of mechanistic clue??
    - Host-mediated changes in plasma VEGF after angiogenesis therapy-(Ebos, Kerbel PNAS 2007)
- VEGF & VEGFR-2 expression did not correlate with outcome in E2100





# What are the mechanistic explanations for our clinical findings??

- Background/Rationale
  - Data suggest there is a role for variability in outcome
     BUT:
  - SNPs & haplotypes not fully defined (PGRN/NHLBI Sequencing in Process)
  - Prior pre-clinical promoter studies are incomplete



#### Plan

- Re-sequence promoter & 5'-UTR
- Definitively establish genetic variation & haplotypes
- Evaluate role of SNPs on promoter activity

#### VEGF Promoter & 5'-UTR Re-sequencing

- 4.0kb upstream of "ATG" start codon
  - 96 samples from Coriell Repository
    - 48 Caucasians, 48 African Americans
  - Captures all known transcription factor binding sites
  - Contains a high density of SNPs
- Identified 19 SNPs
  - 16 of 19 SNPs previously reported (NCBI)
    - 13 common & 3 rare (<5% frequency)</li>
      - 5 of 13 common had no prior population frequency
  - 3 of 19 SNPs are novel (not previously reported)
    - 1 common & 2 rare
- Currently cloning VEGF promoter variants into expression vectors for luciferase studies



#### **Caucasians**

#### **African-Americans**

| 110000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                    | 11111008763271                          |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------|
| CGCGCTATGGCCGCCCAAACCGCGCTCGAACCGCGCTCCGGCCGCTCGAACCGCCGCTCGAACCGCGCTCGAACCGCGCTCGAACCGCGCTCGAACCGCGCTCGAACCGCGCTCGAACCGCGCTCGAACCGCGCTCCGAACCGCGCTCCGAACCGCGCTCCGAACCGCGCTCCGAACCGCGCTCCGAACCGCGCTCCGAACCGCGCTCCGAACCGCGCTCCGAACCGCGCTCCGAACCGCGCTCCGAACCGCGCTCCGAACCGCGCTCCGAACCGCGCTCCGAACCGCGCTCCGAACCGCGCTCCGAACCGCGCTCCGAACCGCGCTCCGAACCGCCCCCAACCCGCCCCCAACCCGCCCCCAACCCGCCCCCAACCCGCCCCCAACCCGCCCCCC | GCGGCAGCC .198 GCGGGAGCC .198 GCGGGAGCC .073 GCGGGAGCC .073 GCGGGAGCC .052 ESSESSESSESSESSESSESSESSESSESSESSESSESS | CGCGCTCCGGCCGCCGCCGCCGCCGCCGCCCGCCCGCCC | TCGAGCGGCAGCC.128 |
| 76%                                                                                                                                                                                                                                                                                                                                                                                                          | CGCGCTCCGGCCGCT                                                                                                    | CGAGCGGCAGCC.017<br>O%                  | 47%               |

#### Conclusions

- Pharmacogenetics (biomarkers)
  - Improves therapeutic index
  - Leads to drug discovery
  - Benefits patients
- Angiogenesis
  - Hallmark of malignancy
  - Inhibition effective in multiple tumor types
  - Therapeutic heterogeneity >> biomarkers needed
    - Early work suggests germline genetic variability might be important
    - Validation and further understanding of molecular biology essential





#### Acknowledgements

- David Flockhart MD, PhD
- Milan Radovich
- Bradley Hancock
- Jason Robarge
- Lang Li, PhD
- Faouzi Azzouz,
- Suzanne Lemler, RN
- Todd Skaar, PhD
- Anne Nguyen
- Sunil Badve, MD

- George Sledge, MD
- Kathy Miller, MD
- Anna Maria Storniolo, MD
- Connie Rufenbarger

"Friends for Life Coalition"

Supported by: ASCO Career Development Award, BCRF, GCRC CreFF Award, Catherine Peachey Fund, & IU Simon Cancer Center

